

Davis-Besse Nuclear Power Station

IMC 0350 Meeting

Desired Outcomes

- •Provide an update of our progress toward restart
- •Update key areas for improvement prior to restart
 - -Calculations
 - -Corrective Action Program
 - -Operations Improvement Action Plan

Lew Myers
Chief Operating Officer - FENOC

Meeting Agenda

Lew Myers
Lim Dayyana
Jim Powers
Bob Schrauder
Mark Bezilla
Mike Roder
Craig Hengge
Clark Price

Lew Myers Chief Operating Officer - FENOC

Lew Myers
Chief Operating Officer - FENOC

- Completed four NRC Restart Checklist Items
 - -2.d Extent of Condition of Boric Acid in Systems Outside of Containment
 - -3.c Quality Audits and Self-Assessment of Programs
 - -3.i Completeness and Accuracy of Required Records and Submittals to the NRC
 - -5.a Licensee's Restart Action Plan
- •Completed 22 items; 9 remaining

- Actions completed
 - -Restart Test Plan
 - -High Pressure Injection Pumps #2 installed
 - -Electrical breaker coordination modifications underway

- Actions completed (continued)
 - -Employee alignment training
 - -First all-employee survey on Safety Culture
 - -Safety Conscious Work Environment survey
 - -Management walk-down of open work orders
 - -Restart Overview Panel conditional restart approval
 - -Emergency Preparedness

- •Items for next ROP meeting
 - -Power Ascension Plan
 - -Electric System Co-ordination Improvement
 - -Service Water Resolution
 - -Containment Air Coolers
 - -High Pressure Injection Pumps
 - -Containment Readiness
 - -Procedure Use and Adherence Training
 - -Operations Improvement Action Plan
 - -Emergency Preparedness at Restart
 - -Cycle 14: Operational Improvement Plan (Engineering and Maintenance Backlog, Equipment Reliability, Engineering Calculations)

Jim Powers
Director - Engineering

- Calculation Review and Assurance History
 - -System Health Assurance Plan Review
 - -Safety Function Validation Project (SFVP)
 - -Purpose was to provide assurance of the adequacy of the design for plant safety functions
 - -Review of systems providing significant contribution to core damage frequency (CDF)
 - Design basis calculations demonstrated safety functions in a majority of cases
 - -Calculations improved as required; e.g. ETAP Analysis

- Calculation Process Improvements
 - -NOP-CC-3002, Calculations issued March, 2003
 - -Procedure change training provided
 - -New requirements for Design Interface Evaluation and 50.59
 - -Detailed Design Verification checklist included
- •Independent assessment by Architect/Engineer (A/E), October, 2003
 - -Benchmarked against A/E and large mid-west utility
 - -Identified areas for improvement
 - -Process and implementation

- •Immediate Improvement Actions
 - -Design Engineering realignment and reaffirmation meetings
 - -Procedure types and adherence expectations
 - -Review of A/E assessment results
 - -Supervisors
 - -Engineers
 - -Collective Significance Condition Report issued
 - -CATI and A/E issues included
 - -Each unit reviewed their issues
 - -Assessed affects on results or conclusions
 - -Corrective Actions for Case Study and Model Calculations

- •Immediate Improvement Actions (continued)
 - -Engineering Assessment Board Calculation Review
 - -Detailed review using checklist
 - -Specific objectives developed
 - -Calculation quality Performance Indicator
 - -Requirement to validate older calculations prior to use
 - -Approved funding for electronic calculation index and ATLAS Electronic Design Basis Information Projects
 - -Initiated both projects
 - -Design control improvements

- •Calculation Improvement Plan
 - -Operational Improvement Plan initiation
 - -Details in Design Basis Assessment Report
 - -Procedure improvements
 - -Implementation performance improvement
 - -Critical (Tier 1) calculation meet high quality standards

Summary

- -System Health Building Block reviews completed
- -System Design Bases support restart
- -Barriers to ensure calculations quality are in place
- -Continued improvements ongoing

Bob Schrauder Director - Support Services

- Apparent Cause Quality
 - -Corrective Action Review Board (CARB) review
 - -Enhanced procedural requirements
 - -Select group of Apparent Cause Evaluators
 - -Established Qualifications
 - -Initial training
 - -Continued training
 - -Proficiency requirements
 - -Condition Report Analysts
 - -Strengthened roles and responsibilities
 - -Attendance at CARB
 - -Long-tem responsibility for quality

- Documentation quality
 - -Requirements added to procedure
 - -Lessons learned training
 - -Condition Report Analyst review
 - -Performance Improvement Unit reviews

- Management involvement
 - -Business Practice for implementation expectations
 - -Reinstated Management Communication and Teamwork Meeting
 - -Section Manager at CARB for Sections Apparent Causes
 - -Manager review of all open Condition Reports
 - -Senior Leadership Team review of Significant Conditions Adverse to Quality (SCAQs)
 - -Executive leadership review of SCAQs as selected by COO
 - -Company Nuclear Review Board independent review of selected Apparent Causes

Trending

- -Quarterly Trend Summary Reports resumed
- -System Health Reports resumed
- -FENOC Manager of Equipment Reliability
- -CREST Statistical Process Control interface created
- -Section assessments planned

- Summary
 - -FENOC has a good Corrective Action Program
 - -Implementation of the Corrective Action Program at Davis-Besse is improving
- Actions Taken to Assure Restart Readiness
 - -On-going CARB review of Condition Reports with specific criteria
 - -Increased management involvement in process
 - -Select qualified Apparent Cause Evaluators
 - -Provide training and strengthen roles and responsibilities of CR analysts
 - -CNRB independent review of Apparent Causes

Normal Operating Pressure Test Conclusions

Mark Bezilla
Vice President

Desired Outcome

- -Provide you with our conclusions of the 7 Day RCS Integrity Test (Nuclear Operating Pressure (NOP) Test)
 - -Conduct walkdowns of systems
 - -Inspect RCS Leakage
 - -Validate New RCS Leakage Procedure/ FLÜS Leak Monitoring System
 - -Correct identified problems
 - -Goal of achieving Lowest Attainable RCS Leakage
 - -Completion of Post-Maintenance Test Matrix
 - -Operational Readiness Assessment
 - -Organization Structure
 - -Management Effectiveness
 - -Operations Effectiveness

24

- •NOP Test successfully accomplished the stated objectives
 - –Areas for improvement were identified

No leakage on incore nozzles (bottom of reactor vessel)

•Plant

- –Integrity of the ReactorCoolant System was verified
- –Sensitivity of the RCSLeakage Monitoring Systemwas confirmed
- Sensitivity of the FLÜS LeakMonitoring System wasconfirmed

No leakage noted on CRDM nozzles

People

- -Predominately exhibited the characteristic and attitude which established an overriding priority towards nuclear safety activities and ensured that issues received the attention warranted by their significance
- -Our assessments were critical of our performance
- -Identified our shortfalls and areas for improvement

Employee alignment training

- Processes
 - -Support safe and reliable plant operation
 - -Identified areas for improvement

Conclusion

- -NOP Test was a success
- Areas for improvementidentified
- Operations ImprovementAction Plan established

Overall leak rate of RCS was best in the history of plant

Mike Roder Manager - Plant Operations

Collective Significance Review

- •Established team
- Reviewed Condition Reports
- Reviewed observation data base
- Reviewed training records
- •Five Areas of Improvement
 - Operations oversight and leadership
 - Transition to operational focus
 - Implementation of standards and expectations
 - Strengthen knowledge and skills
 - Improvements in Condition Report investigation

- Operations Improvement Action Plan
 - -Collective Significance
 - -Industry reviews
 - -Operational Readiness Assessment report
 - -Nuclear Quality Assurance Assessment
- Designed to address four key barriers
 - -Individual Barriers
 - -Program/Process Barriers
 - -Management Barriers
 - -Oversight Barriers

- •Individual Barrier Improvements
 - -Strengthen crew manning
 - -Assessed understanding of expectations
 - -Evaluated standards and expectations for improvements
 - -Reinforcing procedure adherence expectations
 - -Targeting training on integrated operations procedures

- •Program and Procedure Barrier Improvements
 - -Strengthen procedures
 - -Benchmarked against industry leaders
 - -Incorporated lessons learned
 - -Validated on simulator
 - -Focusing on consistent performance
 - -Improved pre-job briefs
 - -Used Systematic Approach to Training to improve knowledge and skills

- •Management Barrier Improvements
 - -Reinforced adherence to on-shift roles
 - -Reduced Operations work hours
 - -Train Site Managers to achieve more critical observations
- Oversight Barrier Improvements
 - -Operational Oversight Managers

- Effectiveness Measures
 - -Successful requalification of Operators
 - -Consistent demonstration of proficiency with plant startup, power Operations, abnormal operating and alarm conditions during training
 - -Operational Oversight Managers qualitative assessment

Operations Improvement Action Plan

Summary

-Upon completion of the Operational Improvement Action Plan, we will be ready for restart

NOP Inspection Results

Craig Hengge Engineer - Plant Engineering

- •Reactor Vessel Inspections Completed
 - -Incore Nozzle Inspection
 - -CRDM Flange Inspection
 - -Bare Head Inspection

FirstEnergy Nuclear Operating Company

- •Incore Nozzle Inspection
 - –May 2003 post-cleaning baseline inspection
 - –October 2003 post-NOP test inspection
 - No indication of leakage
 - No visible residue at any nozzle penetration
 - No detectable changes between inspections

- •CRDM Flange Inspection Results
 - -CCW drips found on stator cooling connection
 - Boron found on nameplates and vent ports
 - -No CRDM flange leakage identified

- •Bare Head Inspection Results
 - -Small particles stuck in nozzle annulus
 - Rust trail traced to CCW drips
 - –White streaks on two nozzles from CCW leak
 - No indications of RCS leakage

Bare Head Inspection

Bare Head Inspection

FLÜS Leak Monitoring System

- •FLÜS Leak Monitoring System
 - -First Installation in United States
 - -State-of-the-Art System

Clark Price Owner - Restart Action Plan

Nov 13/14

- Mode 4/3 Restart Readiness Review Meetings

- Safety Culture Assessment

Nov 18

- Mode 4/3 Restart Readiness **Review Meeting**

- Systems Readiness Assessment

Nov 20

- Company Nuclear Review Board

- Assessment of Restart Readiness

Nov 24

- Submittal of the Integrated Restart Report to NRC

FirstEnera

Station Key Events

- Transition to On-Line Work Control Schedule Dec 1

- Industry Review Team Dec 1-5

- Restart Readiness Assessment

Dec 1/4 - Mode 4/3 Restart Readiness Review Meetings

- Organizational Readiness

- Operations Improvement Action Plan Effectiveness w/ Feedback from the On-shift Oversight
- Readiness for Restart Overview Panel **Action Items**

- December 0350 Public Meeting

Dec 3

48

Dec 5 - Restart Overview Panel

- Final Restart Readiness Assessment

Dec 8 - NRC Restart Assessment Team arrives for on-shift inspection of Mode Ascension

Dec 9 - Enter Mode 4

Dec 10 - Enter Mode 3

Dec 11 - Achieve Full Reactor Coolant System
Pressure and Temperature

- Dec 11/12 Mode 2 Restart Readiness Review Meetings
 - Organizational Readiness
 - Operations Improvement Action Plan Effectiveness w/ Feedback from the On-shift Oversight
 - On-Line Work Control Effectiveness
 - Procedure Use & Adherence Effectiveness
 - Corrective Action Program Effectiveness
 - Final Plant Systems Readiness

- Public Meeting for Request for Restart
- Enter Mode 2 (Restart)
- Enter Mode 1
- 65% Hold for Effectiveness Review
- 100% Power
- Post Restart Integrated Test Plan Critique

Closing Comments

Lew Myers Chief Operating Officer - FENOC

52